Learning to Prompt in the Classroom to Understand AI Limits: A Pilot Study

Artificial intelligence’s (AI) progress holds great promise in tackling pressing societal concerns such as health and climate. Large Language Models (LLM) and the derived chatbots, like ChatGPT, have highly improved the natural language processing capabilities of AI systems allowing them to process an unprecedented amount of unstructured data. However, the ensuing excitement has led to negative sentiments, even as AI methods demonstrate remarkable contributions (e.g. in health and genetics). A key factor contributing to this sentiment is the misleading perception that LLMs can effortlessly provide solutions across domains, ignoring their limitations such as hallucinations and reasoning constraints. Acknowledging AI fallibility is crucial to address the impact of dogmatic overconfidence in possibly erroneous suggestions generated by LLMs. At the same time, it can reduce fear and other negative attitudes toward AI. This necessitates comprehensive AI literacy interventions that educate the public about LLM constraints and effective usage techniques, i.e. prompting strategies. With this aim, a pilot educational intervention was performed in a high school with 21 students. It involved presenting high-level concepts about intelligence, AI, and LLMs, followed by practical exercises involving ChatGPT in creating natural educational conversations and applying established prompting strategies. Encouraging preliminary results emerged, including high appreciation of the activity, improved interaction quality with the LLM, reduced negative AI sentiments, and a better grasp of limitations, specifically unreliability, limited understanding of commands leading to unsatisfactory responses, and limited presentation flexibility. Our aim is to explore AI acceptance factors and refine this approach for more controlled future studies.

Focus: Data Science Education
Source: arXiv
Readability: Expert
Type: Website Article
Open Source: Yes
Keywords: N/A
Learn Tags: AI and Machine Learning Education Ethics Bias Research Centre
Summary: A paper that looks at how comprehensive AI literacy interventions that educate the public about LLM constraints and effective usage techniques can reduce fear and other negative attitudes toward AI.